You are viewing an older version of the ATB. Please view the most current version.
You are viewing an older version of the ATB. Please view the most current version here.
Content displaying: Capacity Factor

Offshore Wind

Capacity Factor

Definition: The capacity factor is influenced by the rotor swept area/generator capacity, hub height, hourly wind profile, expected downtime, and energy losses within the wind plant. It is referenced to 100-m above-water-surface, long-term average hourly wind resource data from Musial et al. (2016).

Base Year: The capacity factor for the Base Year is determined using a representative power curve for a generic NREL-modeled 6-MW offshore wind turbine (Beiter et al. 2016) and includes geospatial estimates of gross capacity factors for the entire resource area (Walt Musial et al. 2016). The net capacity factor considers spatial variation in wake losses, electrical losses, turbine availability, and other system losses. Each wind speed class represents the capacity weighted average of its resource potential.

In the following chart, preconstruction annual energy estimates from publicly available global operating wind capacity in 2018 (Walter Musial et al. 2019) are shown in a box-and-whiskers format for comparison. The range of capacity factors is estimated based on variation in the wind resource for offshore wind plants in the contiguous United States. The range of Base Year estimates illustrates the effect of locating an offshore wind plant in a variety of wind resource.

Future Years: Projections of capacity factors for plants installed in future years are determined based on increasing turbine size and size-agnostic innovations. Under constant turbine spacing, these yield reduced wake losses and thereby, higher annual energy production.

References

The following references are specific to this page; for all references in this ATB, see References.

Beiter, Philipp, Musial, Walter, Smith, Aaron, Kilcher, Levi, Damiani, Rick, Maness, Michael, Sirnivas, Senu, Stehly, Tyler, Gevorgian, Vahan, Mooney, Meghan, & Scott, George. (2016). A Spatial-Economic Cost-Reduction Pathway Analysis for U.S. Offshore Wind Energy Development from 2015-2030. (No. NREL/TP-6A20-66579). National Renewable Energy Laboratory. https://doi.org/10.2172/1324526

Musial, Walt, Heimiller, Donna, Beiter, Philipp, Scott, George, & Draxl, Caroline. (2016). 2016 Offshore Wind Energy Resource Assessment for the United States. (No. NREL/TP-5000-66599). National Renewable Energy Laboratory. https://www.nrel.gov/docs/fy16osti/66599.pdf

Musial, Walter, Beiter, Philipp, Spitsen, Paul, & Nunemaker, Jake. (2019). 2018 Offshore Wind Technologies Market Report. National Renewable Energy Laboratory. https://www.nrel.gov/docs/fy20osti/74598.pdf


Developed with funding from the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy.